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INTRODUCTION

PURPOSE.

This report describes the tests conducted and the results obtained from the
Knoxville terminal area air traffic control (ATC)/active mode Beacon Collision
Avoidance System (BCAS) dynamic simulation. The purpose of this simulation
was to assess the performance of an active mode of BCAS operating in a
moderate—density terminal ATC environment. The specific objectives were to
assess the impact of active BCAS on controllers and control procedures, the
performance of new vertical speed limit (VSL) logic, the effectiveness of an
alternate desensitization method, and the impact of '"no miss distance"
filtering. An additional objective was to characterize and validate the
active BCAS algorithm in terms of number, duration, and location of alerts and
resolution effectiveness.

BACKGROUND,

The ATC/active BCAS interaction simulation was the third phase of the overall
BCAS simulation effort conducted at the National Aviation Facilities Experi-
mental Center (NAFEC). The results of the first phase which focused on the
pilot/BCAS interface were reported in reference 1. The second phase, evaiua-
tion of the full BCAS/ATC interface, was conducted in two parts, and the results
were reported in references 2 and 3. The second phase evaluated full BCAS in
a high-density environment, Chicago, and a moderate-density environment,
Knoxville., Phase 3 was conducted to evaluate active BCAS performance and to
measure the active BCAS interaction that might exist if the active BCAS were
present in a moderate-density ATC terminal environment. The Knoxville terminal
area was selected for the study because BCAS might be the only backup to ATC
in an area that does not have an Automated Radar Terminal System (ARTS III),
and hence, Conflict Alert is not available. The selection of the Knoxville
area also provided an environment for making a comparative analysis between

the active BCAS and full BCAS systems.

This evaluation was conducted at NAFEC, using prototype (draft) active BCAS
logic provided by the MITRE Corporation (reference 4). The logic was not
designed at this stage of testing to have a multi-intruder resolution
capability, Computer Sciences Corporation (CSC) coded and debugged the logic
for the simulation test. The tests were conducted in an error-free environment,
With no error mode, the results provide an upper bound for expected active

BCAS performance.
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DISCUSSION

SYSTEM DESCRIPTION.

The NAFEC Air Traffic Control Simulation Facility (ATCSF) was utilized in a
stand-alone configuration to conduct the test. This facility, described in
reference 5, provides a real-time human interaction simulation environment,
In simulation, air traffic controllers using standard ATC procedures and
phraseology issue clearances to simulator pilots who then convert these
messages for entry into the computer via special keyboards. The computer
interprets these entries and controls the flightpaths of aircraft in the
system,

Active BCAS functions independently of ground surveillance systems. A BCAS-
equipped aircraft can actively interrogate and listen for Discrete Address
Beacon System (DABS)-equipped and air traffic control radar beacon system
(ATCRBS)-equipped aircraft responses providing they have a mode-C altitude
reporting capability. The active BCAS algorithm was given the quantized alti-
tude (nearest 100 feet) and range for each threat aircraft. Relative bearing
on intruder aircraft was not available for use by the algorithm, All aircraft
in the simulation were BCAS-equipped except for the baseline series,

The simulator pilots received BCAS messages anytime an aircraft they were
piloting received a BCAS alert. The simulator pilots informed the controller
of the displayed BCAS messages when controller instructions were contrary to
the displayed message. The aircraft responded to the BCAS alerts automatically.
These responses could be overridden by ATC instructions to the simulator pilots.

Three types of active BCAS messages were provided in the simulation: VSL's,
negative commands, and positive commands. VSL's are alerts which limit the
vertical velocity of the aircraft. The six VSL alerts are "limit climb to
2,000 feet per minute (ft/min) or less,'" "limit climb to 1,000 ft/min or less,"
"1limit climb to 500 ft/min or less," and the three complementary descent alerts,
The negative commands that could be provided were '"do not climb" and "do not
descend."” The positive commands that could be generated were "climb" and
"descend." Only one VSL or positive or negative command could be displayed

at one time,

The active BCAS logic evaluated does not provide positional data on intruders.
Minor algorithm modifications permitted the collection of data on partial
proximity data (PPD) alerts. PPD alerts would provide the pilot with range
and altitude information on an intruder aircraft. These alerts are called
PPD alerts because, in the active mode the relative bearing to the intruder
may not be determined; whereas, in full BCAS, relative bearing on an intruder
is always provided.

An effective alert was an alert which caused th. . dev e bl
intended flightpath. A noneffective alert was an alert that had no effect on




the aircraft's flightpath. PPD alerts were always classed as noneffective
alerts since they did not affect the aircraft's flight profile. VSL's and
negative commands were classed as effective or noneffective depending on
whether the aircraft flightpath was altered. A positive command was always
classed as effective, since it always affected the aircraft's flight profile,

SYSTEM ENVIRONMENT.

The ATCSF was configured to represent a single ATCRBS site; namely, the Knox-
ville terminal area. The traffic volume simulated, represented that volume
projected for the mid-1980's and included overflight traffic at 10,000 feet
mean sea level (m.s.l.) and below, The navigational fixes and the terminal
area traffic flow used were the same as the routes and fixes that exist in the
Knoxville terminal area today. The traffic samples were created from the
actual Knoxville facility aircraft flight strips provided by the chief con-
troller at Knoxville., Based on conversations with the Knoxville Facility
Chief, the basic traffic samples used were increased by 30 percent to reflect
expected 1985 traffic, The alrport simulated was the McGhee-Tyson Airport and
featured parallel runways, 4L and 4R. Runway 4L had an instrument landing
system and all arrival traffic operating under instrument flight rules (IFR)
used this runway., Both runways, 4L and 4R, were used for arrival traffic
operating under visual flight rules (VFR). Both runways were used for IFR
and VFR departures.,

The ATC laboratory simulated four Knoxville controller positions. The posi-
tions were local control (tower), east approach, west approach, and final
vector control., The approach controllers also handled departure traffic
within their sectors. In addition, two "ghost" en route feeder positions were
simulated. Figure 1 depicts the laboratory layout. Additional ATC procedures
employed in the Knoxville simulation are discussed in appendix A.

All traffic in the experiment was controlled, with full data blocks displaved
for each target. Depending on the experimental conditions, IFR or VFR sepa-
ration standards were applied to all aircraft. The only modification of the
data block was the displaying of a blinking character (blinking "+" for descend,
blinking "4" for climb) in the third line of data for aircraft receiving a
positive BCAS command. This was the only BCAS information displayed to the con-
troller during the simulation.

TRAFFIC CONDITIONS.

Two traffic conditions were simulated. The first condition modeled IFR
operations, and the second condition modeled an even mix of IFR and VFR
operations. Overflights were modeled and represented 15 to 20 percent of the
traffic. The average number of active aircraft under terminal control at one
time was 15.

Traffic separation procedures used by the coooo 77 0 o 70

or IFR/VFR standards depending on the conditions being; s @ a2 uted. Heavy
commercial jets do not use the Knoxville airport; hence, this v o of traffie
was not simulated, and nc variation in separation for weight category and wahke
turbulence was provided.
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Each simulation run lasted 1 hour and 15 minutes. The initial 15-minute
period constituted the traffic buildup period. This was followed by a l-hour
data collection period in which traffic density remained nearly constant.

ERROR AND RESPONSE MODELS.

Transponder mode C accuracy and survelllance accuracy were assumed perfect in
all simulation runs. These assumptions were made to conform with the simu-
lated BCAS conditions in previous ATCSF collision avoidance experiments.
Although some measurements of BCAS surveillance error magnitude have been ¢
made, an adequate description of the dynamic characteristics of the errors,
such as correlation and autocorrelation, was not yet available (reference 6).
The dynamic interaction of these errors with BCAS resolution should be iden-
tified prior to modeling such errors in simulation. Since no accurate des-
cription of the dynamic characteristics of BCAS errors in tracked position

and velocity of an intruder has been published, perfect position and velocity
data were provided to the BCAS tracker. The reported altitudes of all aircraft
were quantized in 100-foot increments, the limit of mode C transponders. All
aircraft responded to BCAS alerts using empirically determined pilot and
aircraft response delays.

™ W RV Aoy

The pilot response delay model was based on the Gamma distribution with a mean
of 5,56 seconds. This model was the same one used in the Knoxville full-BCAS
study (reference 3). The use of this model resulted from findings in phase 1
experimentation. The alrcraft acceleration rate both horizontally and verti- 1
cally was 6 feet per second squared (0.19 g). The vertical and horizontal
speed characteristics were dependent on the type of aircraft and flight con-
dition., The actual values of the aircraft performance characteristics can be
found in appendix B,

DESENSITIZATION METHODS.

Some type of desensitization method in situations of closely spaced maneu-
vering aircraft is required for BCAS. BCAS must be flexible, insuring adequate
protection for en route traffic while keeping the BCAS alert rate in the termi-
nal area at an acceptable level, Based on previous BCAS simulation work, the
majority of BCAS activity occurs during the sequencing and spacing of arrival
aircraft in the final approach area (references 2 and 3), BCAS must be desensi-
tized (i.e., reduce the threat thresholds which identify the BCAS protection
volume) at some point along the arrival path to permit adequate collision
avoidance protection without generating an unacceptably high number of BCAS
alerts in the terminal area.

v T —T Y. W P

The draft of the active BCAS National Stand: 7 describes the desensitization
as five performance levels of BCAS threat d -uwction and resolution logic. The
draft describes a method of automatically determining the performance level
based on determining aircraft altitude and range from a radar site using a !
radar beacon transponder (RBX) or sensitivitr ~ontrol unit (SCU). Ac rhe i
performance levels increase from 1 to 5, the thresl :1d parameters becone more .
sensitive, thereby increasing the protection volume around each BCAS-equipped ?
aircraft. When the BCAS performance level is set to level 1, BCAS does not '




transmit interrogations. The performance level 2 desensitization area is
where BCAS tracking of an intruder aircraft is performed, but all resolution
logic 1s blocked. The level 2 area extends outward for a 2-nautical mile
(nmi) radius from the radar site. Performance level 3 airspace extends from
2 nmi to 15 nmi below 10,000 feet m,s.l., Performance level 4 area, an
intermediate protection area, extends from 15 mnmi to 50 nmi below 10,000 feet
m.S.l. The highest protection area, performance level 5 airspace, extends
upward from 10,000 feet m.s.l. out to 50 mmi from the radar site, at which
point it includes all airspace from the surface up. Figure 2 shows the BCAS
performance levels and boundaries for this method of desensitization.

A second method of desensitization used in these tests was based solely on
altitude and was used to measure the effect that the lack of radar range
information might have on BCAS alert rates. This method of desensitizing the
system would be employed where ground reference information (radar, RBX, and
SCU) was not available. Figure 3 presents the altitude stratification used in
this method. The altitude stratification utilized in this simulation was
based on traffic sample information for the Knoxville terminal area. Over-
flights utilized en route cruise altitudes between 6,000 feet m,s.l. and
10,000 feet m.s,.l,; hence, this altitude strata constituted performance level 4
desensitized airspace. Performance level 5, the highest BCAS protection,

was assigned to the area above 10,000 feet m.s.l. and level 3, terminal area
protection, was assigned to the area below 6,000 feet m.s.l. To prevent BCAS
interaction with aircraft on the runway and to provide performance level 2
desensitization, the floor of the BCAS resolution function was set at 500 feet
above ground level (AGL). This resulted in a larger volume of airspace for
performance level 3 than allowed in the altitude/range desensitization method.

DATA COLLECTION PLAN,

A data collection plan was developed to provide the most direct approach in
addressing the project objectives. Twenty-four simulation runs were made
consisting of eight baseline (noc BCAS) runs, eight runs using the altitude
desensitization method, and eight runs using the altitude/range desensitiza-
tion method., Within each group of eight, four runs were made with all air-
craft operating in IFR conditions, and four runs were made with an even mix
of IFR and VFR traffic.

To provide some degree of randomness in the traffic flow, two traffic samples
were developed for each of two traffic conditions., For all traffic samples,
current peak-hour operations for Knoxville were increased by 30 percent to
simulate 1985 traffic projections for Knoxville, The traffic samples were
varied by changing the aircraft start times and identifications. The par-
tially crossed, nested design used is reflected by the run schedule shown in
table 1,

CONTROLLER QUESTIONNAIRES.

All controllers who participated in the simulation complcced questionnaires
at the conclusion of the tests. The questionnaire: were uscd to “w0sure
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controller opinion on BCAS and were identical to those used in the previous
Knoxville full BCAS simulation. The complete questionnaire is included as
appendix C.

RESULTS AND ANALYSIS

This section of the report discusses operations rates, effect of BCAS on the
ATC system, conflict analysis, BCAS alert rates, alert durations, alert loca-
tions, effect of altitude desensitization, effect of VSL logic modifications,
impact of no miss distance on active BCAS performance, traffic density
analysis, and active BCAS algorithm deficiencies.

OPERATIONS RATES.

The operations rates that resulted from the Knoxville active BCAS series and
the no BCAS baseline series are shown in table 2, In addition, the operations
rates for the previous Knoxville full BCAS series (reference 3) are listed.

The total operations rates reflect the sum of the arrivals, departures, and
overflights for an average l~hour data collection run. The average hourly
rates for the full BCAS and active BCAS are based on eight l~hour runs for
each traffic condition. The average hourly rates for the no BCAS series are
based on four l-hour runs for each traffic condition. There is no statisti-
cally significant difference in the hourly operations rates for any of the
test series,

EFFECT OF ACTIVE BCAS ON CONTROLLERS AND CONTROL PROCEDURES.

Quantitative and subjective data were gathered to determine the overall impact
of BCAS on controllers and control procedures. Table 3 is a listing of the
more important quantitative measures collected during the active BCAS series
and baseline series (no BCAS). A comparison of ATC performance with BCAS and
without BCAS shows that BCAS had no adverse impact on the ATC system, The ATC
system performance measures are defined in appendix D,

The subjective results collected from the controller questionnaires indicate
that the controller subjects felt that active BCAS is an acceptable separation
assurance system when used as a backup to the ATC system. The significant
results of the questionnaire analysis are shown in table 4, The 'no response'
cases for the command agreement question reflects the number of controllers
who did not observe any positive BCAS commands throughout the simulation runs,

CONFLICT ANALYSIS.

Data reduction and analysis (DR&A) software provided a list of aircraft pairs

which had violated the ATC separation criteria. . 7 7 »f e ot
data allowed an assessment of the orderliness of tratfic tlov and conformance
to ATC separation standards by controllers, For the 16 active BCAY runs, a
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TABLE 2.

AVERAGE HOURLY AIRCRAFT OPERATIONS RATES

Test Traffic
Series Condition Arrivals Departures Overflights Total
No BCAS IFR 26.3 36.3 16.0 78.6
IFR/VFR 29.0 36.0 16.0 81.0
Active BCAS IFR 27.8 34.8 15.8 78.4
IFR/VFR 26.0 36.0 16.0 78.0
Full BCAS IFR 26.5 36.1 14.2 76.8
IFR/VFR 27.9 36.3 20.4 84.6
TABLE 3. ATC SYSTEM PERFORMANCE MEASURES
No BCAS Active BCAS
(Alt/Rng (Altitude
(Baseline Desensitization | Desensitization
TEST MEASURE Series) Series) Series)
Average Total Time-In-System 22.8 23.3 22.3
for Arrival Aircraft (minutes)
Average Instantaneous Aircraft
Count per Control Position
East Approach 6.3 6.5 6.3
West Approach 5.3 5.3 5.2
Final Approach 2.7 3.1 2.7
Average Number Control Efforts 4.2 4.2 4.0
per Aircraft
Average Talk Time per Aircraft 29.0 29.4 30.0
(seconds)
11




TABLE 4.

SUMMARY OF CONTROLLER QUESTIONNAIRES

Question

Percentage (%)

Did you agree with commands?

Never 0
Occasionally 0
Usually 67
Always 11
No Response 22
Should BCAS be put into operational use?

Strongly Opposed 0
Opposed 0
Indifferent 33
Favored 56

11

Strongly Favored

TABLE 5. MINIMUM SEPARATION BETWEEN AIRCRAFT
Vertical Horizontal Minimum
Desensitization Traffic Separation Separation Slant Range
Method Condition (feet) (feet) (feet)
Altitude IFR 418 335 536
Desensitization IFR/VFR 485 359 603
Altitude/Range IFR 511 436 672
Desensitization IFR/VFR 500 471 687
12




total of nine violations of ATC separation criteria occurred, resulting in an
average of 0.6 violations per hour. The majority of the conflicts occurred
within 10 nmi of the airport., Five conflicts were between arrival aircraft

in the traffic pattern, and two conflicts were between departure and arrival
aircraft approximately 3 mnmi off the end of runway 4L. The remaining two
conflict palrs were between overflight and arrival aircraft., These two con-
flicts occurred more than 30 nmi from the airport. The low number of conflicts
indicates that proper control procedures were employed throughout the experi-
ment,

ACTIVE BCAS PROTECTION.

A thorough analysis of the protection afforded by active BCAS was made., The
analysis included the identification of the minimum slant range that occurred
between all encounters. Table 5 presents the minimum slant ranges that
occurred for each desensitization method and traffic condition. The minimum
slant range is the three-dimensional closest point of approach between any
two aircraft, The horizontal and vertical components of these closest points
of approach are also included in table 5.

In all cases, the encounters which resulted in the minimum slant ranges had
been detected, and a positive BCAS command had been generated. The tabulated
minimum slant range values represent the separation that resulted following
the positive BCAS commands., Although the minimum values observed are less
than previously observed in the Knoxville full BCAS evaluation (due to reduced
threshold parameters and escape maneuvering in the -sertical plane only), the
vertical separation for all four cases exceeded 400 feet.

Throughout the 16 hours of simulation 31 aircraft encounter periods occurred.
An encounter period is the time during which at least one of the two aircraft
in a BCAS conflict received a positive, negative, or VSL alert, The total
number of alerts observed was significantly higher than the number of encounter
periods. This resulted because BCAS often generated several alerts during

any one encounter period between the same two aircraft,

The 31 BCAS encounter periods were reviewed in detail. Of interest in the
analysis were the relative alrcraft positions at alert onset. The relative
position at alert onset 1is presented in figure 4. A review of this figure
indicates that 80 percent of the alerts began when existing separation exceeded
controlled VFR separation standards. A large proportion of the alerts

occurred for controlled VFR afrcraft which had 500 fect vertical separation,

The three points in figure 4 identified by an asterisk reflect encounters in
which alert generation was initially delayed because of performance level 2
logic desensitization (alert generation is blocked).

More important than the relative positions at alert onset is the question of
resulting separation following a BCAS alert, ™ ~T~ongt poirte of annroach
(CPA) that followed BCAS alert action during the 3l encounier periods are

presented in figure 5. The reduction in separation when ¢ mpaved to figure 4
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represents the closure that occurred between aircraft during BCAS encounter
periods. The high number of CPA's which still have a vertical separation of
500 feet represent the result of negative commands which were generated for

a pair of level flight aircraft. Although the horizontal components of the
CPA's are reduced as expected when compared to the horizontal components of
the relative positions at alert onset, the greater dispersion of the vertical
components at CPA indicates the effect of positive BCAS vertical commands.
The plus (+) identifies the relative position at CPA for the aircraft pair
that resulted in minimum slant range throughout the simulation. More than 400
feet vertical separation was attained with a BCAS command in this case. In
all cases following BCAS command interaction, either the vertical separation
exceeded 400 feet or the horizontal separation exceeded 0.5 nmi,

ACTIVE BCAS ALERT RATES AND DURATIONS.

Each BCAS alert that occurred in the Knoxville simulation was classed as
either an effective or nonecffective alert, A\ noncffective alert is a BCAS
alert that has no effect on the aircraft flight profile either horizontally or
vertically. VSL's and negative alerts were considered noncffective alerts
when the alert caused no effect on the aircraft flight profile. Although it
is possible that a positive alert would cause no effect on flight profile (i.e.,
a climb command being issued to an aircraft that is climbing), this did not
happen during the simulation. As a result, all positive commands were classed
as effective alerts. Positive, negative, and VSL alerts that caused an effect
on the aircraft's flight profile were classed as effective, About 60 percent
of all alerts were noneffective and 40 percent were cffective.

Table 6 presents the average hourly active BCAS noneffective alert rates, and
table 7 presents the average hourly active BLAS effective alert rates, The
rates are based on the average of 8 lhours of data for cach traffic condition.

Throughout the active BCAS simulation, the alert rate averaged less than 3.5
noneffective alerts per hour and less than 2.3 cffective alerts per hour.

On a per-aircraft basis, 1 aircraft in 23 received a noneffective alert and

1 in 36 received an effective alert. On a per-flight-hour-basis, one non-
effective alert was issued every 7.7 aircraft flight hours and 1 effective
alert was issued every ll.] aircraft flipht hours. At the request of the Air
Transport Association, a detailed analysis of alert rates for air carrier air-
craft was made. This analysis is presented in appendix E.

More total alerts occurred for the !FR/VFR runs than for the 1FR runs. The
hourly command rate for the FR/VFR runs was twice the hourly command rate for
IFR runs. These results are logical, since VFR alliw aircratrt to operate in

a closer proximity and thereby increase the lilko litmad of a BCAS alert,

Figure 6 provides a conparison of alects saowinn percentape of total alerts
and percent of ecach alert tvre that was effective.  The low proportion of VSL




TABLE 6.

AVERAGE HOURLY ACTIVE BCAS NONEFFECTIVE ALERT RATES

IFR IFR/VFR
Alert Average Average
Type Number Duration Number Duration
(alerts/hr) (sec) (alerts/hr) (sec)
VSL 1.1 8.4 1.0 8.0
Negative Command 1.8 9.5 2.9 18.0
TOTAL 2.9 9.0 3.9 15.4
TABLE 7. AVERAGE HOURLY ACTIVE BCAS EFFECTIVE ALERT RATES
IFR IFR/VFR
Average Average
A ;
Tigzt Number Duration Number Duration
(alerts/hr) (sec) (alerts/hr) (sec)
VSL 0.1 5.0 0.6 7.8
Negative Command 0.4 12.7 0.0
Positive Command 1.1 13.0 2.4
TOTAL 1.6 12.4 3.0
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alerts (26 percent) and high proportion of negative commands (45 percent) are
attributed to the lack of horizontal miss distance filtering in active BCAS

and the BCAS logic modifications that followed the Knoxville full BCAS ;
simulation, As a result of the BCAS logic modifications, a conflicting .
aircraft in level flight will now receive a negative or positive alert instead o

of a VSL., This partially accounts for the high percentage of negative alerts
and their low effectiveness percentage (8 percent)., Additionally, a signifi-
cantly higher proportion of the VSL's are effective when compared to the full
BCAS Knoxville results (refercnce 3). The high propertion of positive com—
mands (29 percent) is attributed to the lack of horizontal miss distance
filtering. These factors will be covered in more detail later in this report.

COMPARISON OF ALTITUDE DESENSTITIZATION VERSUS ALTITUDE/RANGE DESENSITIZATION,

BCAS has provisions for the use of different logic thresholds (performance
levels) In different desensitization zones. The draft of the active BCAS
National Standard defines desensitization zones bhasced on aircratl altitude and
aircraft range from a terminal radar, RBXN, or SCU, An objective of this studvy
was to analyze the effect of an alternate desensitization nethod which is

based solely on aircraft altitude. A comnarison was nmade of the number,
duration, and location of alerts for the two methods of desensitizing a terminal ,
area. In general, desensitization based on aircralt altitude proved effective, 1

Table 8 presents the average hourly active BCAS advisorv rates (noneffective
alerts) for the two desensitization methods. Table 9 presents the average
hourly active BCAS command rates (effective alerts) for the twe desensitiza-
tion methods. These tables are based on four l-hour runs for cach traftic
condition under each desensitization method. Wable 8 shows somewhat fewer
advisories generated in the IFR condition by altitude/range desensitization
than with the altitude desensitization; however, the duration tor the aititade/
range desensitization advisories is almoest twice as long. The =lightly higher
advisorv rate generated in the altitude desensitization method is due to an
additional 0.7 VSL alerts per hour, nearly twice the VSL advisory rate {or
altitude/range desensitization. In the TTR/VFR mix condition, the situaticr s
reversed, with the advisory rate being generated be thoe altitwle/range

P

+ 1

descensitization cccurring rthree times more often thoan the rate genervated with

the altitude desecnsitization method.  The pronounced fvorease 0 face advisory
rate for altitude/range desensitization is duc to an increasc v negative
i

advisories. VSL advisories were the same tor beth moethods, e Bicher

negative advisorv rate for altitude/ranve desensitization is duc o the Iarger

arva covercd bhv nmore sensitvive thresheld porameters (hig' v poertornance levels),
Figure 7 compares the level of protection provided by the oo acesensitization 1
. : ™
nethods.
Table 9 shows Tittle differvence in comrannd racon vetweocn the v desensi- ;
tization methods in the P8 condicion 1oy comnasds por oo worsns Loy commands ;
per hour). The average dural ion is aluost the o0 0100 seconds versus 1004 !
seconds) .
Il
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TABLE 8.

DESENSITIZATION EFFECT ON NONEFFECTIVE ALERT RATES

Alt/Rng Desensitization Altitude Desensitization
IFR IFR/VFR IFR IFR/VFR
Number Avg Number Avg Number Avg Number Avg
Advisory (alerts/ Dur (alerts/ Dur (alerts/ Dur (alerts/ Dur
Type hr) (sec) hr) (sec) hr) (sec) hr) (sec)
VSL 0.8 10.7 1.0 10.0 1.5 7.3 1.0 6.0
Negative 1.8 12.4 5.0 19.5 1.8 6.5 0.8 7.7
Command
TOTAL 2.6 11.9 6.0 17.9 3.3 6.8 1.8 6.8
TABLE 9. DESENSITIZATION EFFECT ON EFFECTIVE ALERT RATES
Alt/Rng Desensitization Altitude Desensitization
IFR IFR/VFR IFR IFR/VFR
Number Avg Number Avg Number Avg Number Avg
Advisory (alerts/ Dur (alerts/ Dur (alerts/ Dur (alerts/ Dur
Type hr) (sec) hr) (sec) hr) (sec) hr) (sec)
VSL 0.0 - 0.8 8.7 0.3 5.0 0.5 6.5
Negative 0.3 6.0 0.0 -—- 0.5 16.0 0.0 ---
Command
Positive 1.0 14.8 1.5 18.2 1.0 11.2 3.3 7.8
Command
TOTAL 1.3 12.8 2.3 14.9 1.8 11.5 3.8 7.6
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In the IFR/VFR mix series, the command rate in the altitude/range desensitiza-
tion series was significantly less than the command rate in the altitude
desensitization series (2.3 commands per hour versus 3.8 commands per hour);
however, the average duration for the altitude/range desensitization was twice
that of the altitude desensitization (14.9 seconds versus 7.6 seconds). This
difference in command rates in the IFR/VFR mix is due to the higher concentra-
tion of positive commands occurring within 5 nmi of the airport in the
altitude desensitization series. This is due to the more sensitive BCAS
threshold parameters incurred by overflights with altitude desensitization
within 15 nmi of the airport and the performance level 2 zone around the
airport with altitude/range desensitization (see figure 7).

A Calcomp program was used to identify and plot the alert locations. The
results for the two methods of desensitization are presented in figures 8 and
9. For each encounter pair, the most severe alert type for each aircraft

was plotted. Within the alert sequence, the increasing order of severity was
VSL alerts, negative alerts, and positive alerts, The established airways,
navigational fixes, and control area boundaries are shown as background
information. The symbols represent the aircraft location where the alert first
occurred, A red symbol indicates the alert was generated for an overflight
aircraft. All alerts for nonoverflight aircraft occurred within 10 nmi of

the radar site. The majority of these alerts appear to be located within 2 nmi
of the ILS centerline, with the remaining alerts occurring on the downwind leg
of the traffic pattern.

The location of alerts for overflight traffic varied with the desensitization
method as depicted in figures 8 and 9. The majority of alerts occurring within
the overflight band of 6,000 feet to 10,000 feet m.s.l. in the altitude desensi-
tization series were within 15 mmi of the airport. The alerts for overflights
in the altitude/range desensitization series were located outside the 15 nmi
range., Figure 7 shows an area sensitivity comparison of the two desensitization
methods. The difference in the location of performance levels accounts for the
different alert patterns. Within the overflight altitude band, altitude
desensitization is more sensitive than altitude/range desensitization within

15 nmi of the airport (performance level 4 versus performance level 3) and
provides a larger protection volume around each BCAS-equipped aircraft.
Altitude/range desensitization provides a larger protection volume around each
BCAS-equipped aircraft beyond 50 mmi of the airport (performance level 5 versus
performance level 4).

An Investigation was conducted to determine how the alerts were broken down
for specific aircraft operations; i.e., arrival/departure traffic and over-
flight traffic. Table 10 presents the summary of this investigation for each
method of desensitization., Examination of table 10 shows that the total BCAS
alerts were about equal for specific operations using either desensitization
method; however, the alert durations were twice as long for the altitude/
range desensitization method. Few alerts were gencrated for overflight
traffic for either desensitization method.
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TABLE 10.

AVERAGE HOURLY ALERT RATES

FOR SPECIFIC OPERATIONS

Active BCAS (Alt/Rng)

Active BCAS (Altitude)

Desensitizatior. Desensitization
Arr/Dep Overflights Arr/Dep Overflights

Number Avg
(alerts/ Dur

Number Avg
(alerts/ Dur

Number Avg
(alerts/ Dur

Number Avg
(alerts/ Dur
hr) (sec)

Alerts hr) (sec) hr) (sec) hr) (sec)
VSL 1.1 10.1 0.1 7.0 1.6 6.6 0.0 -—
Negative 3.1 17.5 0.5 19.7 1.3 10.8 0.3 9.5
Commands
Positive 0.9 14.2 0.4 27.5 1.9 8.5 0.4 10.0
Commands

TOTAL 5.1 15.3 1.0 21.6 4.8 8.5 0.7 9.8
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EFFECT OF VSL LOGIC MODIFICATIONS.

The VSL logic in previous simulations resulted in an undesirably high VSL
alert rate and a high noneffective VSL alert rate for overflight traffic. The
VSL logic modifications, as described in appendix F, eliminated both of these
problems, The average number and duration of active BCAS VSL alerts were
significantly reduced as shown in table 11.

The Knoxville full BCAS VSL logic resulted in one out of eight aircraft
receiving a VSL alert., The active BCAS VSL logic resulted in 1 out of 70
aircraft receiving a VSL alert, with only 1 out of 100 overflights receiving
an alert. VSL alerts for overflight aircraft were nearly eliminated in the
active BCAS simulation (0.1 VSL/hr, with an average duration of 7 seconds).
The overflight alerts which were eliminated were noneffective VSL alerts
between aircraft navigating on established airways or direct routes utilizing
proper separation techniques.

The overall percentage of noneffective VSL alerts was reduced slightly. The
full BCAS VSL logic resulted in 88 percent of the VSL alerts being noneffective,
The active BCAS modified VSL logic resulted in 73 percent of the VSL alerts
being noneffective. Noneffective VSL alert generation is addressed later in
the report under "Algorithm Deficiencies."

TABLE 11. VSL DISTRIBUTION STATISTICS

Mean
Number Duration Percent
BCAS Series (alerts/hr) (sec) Effective
Active (Alt./Desensitization) 1.6 6.5 24 .0
Active (Alt./Range Desensitization) 1.2 9.8 31.0
Full (Alt./Range Desensitization) 10.4 36.1 12.0
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EFFECT OF NO MISS DISTANCE INFORMATION ON ACTIVE BCAS PERFORMANCE.

Table 12 presents the analytical results of applying horizontal miss distance
filtering to the active BCAS simlation results. The ATCSF tapes recorded

the coordinates of each aircraft and all BCAS variable and parameter values
during each second of a simulation encounter, These data allowed the calcula-
tion of horizontal miss distance even though it was not available to the active
BCAS algorithm. By analyzing each encounter on a second-by-second basis and
utilizing the computed projected horizontal miss distance, a new alert command
sequence could be generated based on full BCAS logic. The assumption was made
that the surveillance data were without error. The horizontal miss distance
logic used 1is shown in appendix F. 1If projected horizontal miss distance
filtering had been used, 53 percent of the positive commands would have been
replaced by negative alerts and 14 percent would have been eliminated.

The maximum benefit of horizontal miss distance filtering would be in the

final approach area, where aircraft are turning onto parallel final approaches.
In previous BCAS experiments analysis identified a problem with unnecessary
VSL alerts occurring in the parallel approach area, The alerts occurred
because there were no horizontal miss distance filter, even with bearing
information for VSL alerts. Logic changes have eliminated the VSL alerts for
aircraft in level flight; however, unnecessary BCAS alerts during the turn to
final for parallel approaches will continue to be a problem in active BCAS.

Figures 10 and 11 depict a parallel approach in which N732DD received a
"climb" command and DL359 received a "descend" command. Aircraft N732DD
executed a missed approach as a result of the positive BCAS command., If
accurate bearing information had been available to determine a projected hori-
zontal miss distance, no positive commands would have been generated. Since

TABLE 12. EFFECT OF HORIZONTAL MISS DISTANCE FILTERING

No Horizontal Miss Horizontal Miss Distance
Distance Filtering ___Filtering Applied
Average Average
Alert Number Duration Number Duration
Tvpe (alerts/hr) (sec) (alerts/hr) (sec)
VSL 1.4 8.0 1.4 8.0
Negative 2.6 15.6 3.2 13.5
Commands
Positive 1.8 12.2 G.h 18.3
Commands
TOTAL 5.8 12.7 12.6
26
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the projected horizontal miss distance would have remained greater than 0.3 nmi
(the positive command threshold in performance level 3) and remained less than
1 nmi (the negative command threshold in performance level 3), a negative com-
mand would have been generated. Negative commands may have prevented the
unnecessary missed approach.

TRAFFIC DENSITY ANALYSIS.

The Knoxville traffic uwodel used in this experiment was subjected to analysis
to identify where and how often the traffic model exceeded the active BCAS
density specification of an average of 0.02 alrcraft/nmi2. The BCAS densitv
specification is found in reference 6. All aircraft were BCAS-equipped in
this investigation,

A program was developed to (ount aircraft within 10 nmi of specific points
which comprise a uniform grid across the Knoxville terminal area. The program
identified and plotted the regions in the Knoxville area where the simultaneous
aircraft density exceeded the BCAS specification. Appendix G shows several of
these plots. Using data provided by this program, the probabilitv of exceeding
the BCAS density limit specification at a given range from the radar was
determined,

Figure 12 presents the probability of exceeding the BCAS density limit as a
function of range from the radar site. By onlv counting aircraft within 5 nmi
of the points in the uniform grid, the effect of limiting transponder inter-
rogation power can be identified. A second curve on figure 12 depicts the
effect of limiting transponder interrogation power,

Additional analysis was conducted to identify the effect on density caused bv
altitude filtering of certain tracks., If the difference between aircraft
altitudes exceeded 2,500 feet, the aircraft were not included in the counts
for the associated points in the grid. Figure 12 also presents the results of
this analvsis.

Appendix G describes the regions in detail where the aircraft density in the
traffic model exceeded the BCAS density limit. Appendix G and figure 12, when
compared to figures 8 and 9, clearly indicate that a majority of alerts occurred
in regions where the probability of exceeding the BCAS specification limit was
high.

ALGORITHIM IMPROVEMENTS.

A review of all BCAS encounters has led to the identification of several po-
tential areas for active BCAS algorithm improvements, Specific encounter plots
are presented to illustrate these areas which are related to improvements

with noneffective VSL alerts, command oscillations, and vertical sense change,

NONEFFECTIVE VSL ALERTS. A capability to ... PR w
effective VSI. alerts exists, Two aircraft on paral.er t@ 0 s mancuvering in
the same vertical direction but with no vertical closurce can botl recelve
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noneffective VSL alerts. This occurs most frequently on parallel departures
and approaches. Figures 13 and 14 provide an example of this flaw. N7573Q ,
and PI961 were on parallel headings climbing to altitude. PI961 was climbing ;
at a faster vertical rate than N7573Q, and the pair was separating in alti- 4
tude. PI961 received a "do not descend" alert and N7573Q received a series
of "do not climb” and "limit climb to 1,000 feet per minute or less' alerts.
The "limit climb to 1,000 feet/minute or less' alerts were directed to an
aircraft which was climbing at 500 feet per minute.

In this case, the VSL alert was undesirable. Proximity information on the
intruder aircraft would have been more useful to both pilots. These noneffec-
tive alerts could have been eliminated if the active BCAS logic checked for
closure and also compared the provisional limit alert with the aircraft
vertical rate to ensure that an effective command is issued. If these two
checks were made for the VSL alerts that occurred in the active BCAS simula-
tion, the noneffective VSL alert rate would have been significantly reduced.
Thirteen of the seventeen noneffective VSL alerts that occurred in the active
BCAS simulation would have been eliminated.

COMMAND OSCILLATION. Figures 13 and 14 depict the oscillation of commands that

can occur due to BCAS tracker performance., Vertical tracker errors occur j
because of the 100-foot quantization of mode C altitude data. This process

results in erroneous projections of vertical miss distance. The projections

cycle in magnitude at low vertical rates causing commands to oscillate. The

greatest error in projected position occurs prior to and after a change in

reported mode C altitude. (NOTE: This problem has been reduced in later

versions of the logic.)

VERTICAL SENSE CHANGE. Figures 15 and 16 depict an example of the tracker noise

problem that may occur on rare occasions and cause a change in the sense of
direction of BCAS commands. A confusing sequence of alerts can be generated
when the relative projected altitude of two aircraft changes. This situation
occurred during one encounter in the simulation. SEM826 is projected to be
below DL484; therefore, SEM826 receives a 'descend" command, and DL484 receives
a "limit descent'" alert. The next cycle creates a problem, SEM826 is pro-
jected to be above DL484, and the resolution logic causes a '"climb" command

for SEM826 and a "descend" command for DL484., Both pilots would see a

reversal of the original BCAS command. (NOTE: Present active BCAS resolution
logic now precludes reversals in command sense.)

PARTIAL PROXIMITY DATA ANALYSIS.

Previously, the VSL threat volume was significantly larger than the positive

and negative threat volumes. This allowed VSL alerts to serve as precursors *

to positive and/or negative commands. The new active lopic has reduced the

VSL threat volume and VSL alerts no longer precede positive or negative

commands, With very minor algorithm changes, a precursor could still be i

provided in the form of Partial Proximity Data (PPD) alerts, Partial Proximity ;

Data consists of intruder range and altitil ferailakiliee Af chije infarmation

to the pilot may inhibit an abrupt turn or veri-o. Dot coure o

to late positive or negative commands. The usc of TPh o .-ceooid pesult in i

less restrictive flight and possibly less (TC intevaction. PP oalerts provide :
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more information to the pilot allowing him to assess the situation. VSL alerts
direct an action without allowing the pilot full or even partial knowledge of
the situation that exists., In fact, limit descent VSL alerts can be caused by
intruders which are currently above own aircraft but are projected to be below
own aircraft at CPA.

During the Knoxville simulation, modifications to the BCAS logic were made to
measure the frequency and duration of PPD alerts. These modifications are
shown in appendix F. Table 13 presents the hourly average number and duration
of PPD's which resulted. The range threat region for PPD's was defined by a
range tau of 60 seconds or range less than 3 nmi. The altitude threat region
was defined by a vertical tau of 60 seconds or less than 2,000 feet altitude
separation. Both the horizontal and vertical threat conditions must be satis-~
fied before a PPD alert is issued.

The higher occurrence of PPD's for IFR/VFR traffic is expected because of the
reduced separation which exists in this case. Only slight variations in rates
are observed for the different desensitization schemes. (The total Knoxville
area PPD alert rates represent one PPD alert per aircraft flight hour for IFR
conditions and 1.4 PPD alerts for every aircraft flight hour in the IFR/VFR
condition.) This indicates one out of three aircraft will receive an alert
during IFR conditions and one out of 4.2 aircraft will receive an alert during
IFR/VFR conditions.

TABLE 13. AVERAGE HOURLY PARTIAL PROXIMITY DATA ALERT RATES

IFR IFR/VFR
Average Average
Desensitization Number Duration Number Duration
Method (alerts/hr) (sec) (alerts/hr) (sec)
Altitude 25.3 50.4 38.3 36.9
Altitude/Range 26.0 34.9 32.3 42.4
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The ability to visually acquire the threat is a function of several factors.
The range when the alert first occurs is of primary importance. Figure 17
depicts the probability that the threat was beyond a certain range when the
PPD alert (based on a 60-second tau) initially occurred, The second curve
represents the analytical results that would have occurred in Knoxville if
the algorithm used a 45-second tau to generate PPD alerts. The 50th and 75th
percentile values for each distribution are also shown. Of the original PPD

alerts that occurred in Knoxville (tau = 60 seconds), 50 percent were generated

when the initial slant range to the threat exceeded 4.4 nmi. Twenty-five
percent of the alerts occurred when the slant range was in excess of 5.4 nmi.
According to Andrews (reference 7), the probability of acquiring the intruder
at these ranges is extremely low.

An immediate consequence of the reduction of the PPD alert tau to 45 seconds
would be a 40-percent reduction in the number of alerts which occurred. On
237 occasions during the Knoxville simulation, the tau values during a PPD
alert period never decreased to 45 seconds. The resulting 50th and 75th
percentile values for tau = 45 seconds were 3,8 and 4.4 mmi, respectively.

A question arises concerning the possiblity of confusing the pilot with PPD
for multiple simultaneous threats. Only 25 cases of multiple PPD messages
occurred throughout 16 hours of data collection., This rate indicates less
than 1 case of multiple PPD alerts per 17 aircraft flight hours.
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CONCLUSIONS

Based on the results of the active Beacon Collision Avoidance System (BCAS)
dynamic simulation, the following conclusions are made:

1. The presence of active BCAS in a moderate-density terminal Air Traffic
Control (ATC) environment had no adverse impact on the controllers or control
procedures. The air traffic controllers who participated in the simulation
favored the use of the active BCAS system as a backup to the ATC system., There
was no significant difference in the ATC system performance measures between
the no BCAS baseline runs and the simulation runs in which all aircraft were
BCAS equipped.

2. It is concluded that the active BCAS logic, utilizing either desensitiza-
tion method, provided adequate resolution of conflicting aircraft pairs. BCAS
detected all penetrations of ATC separation criteria.

3. The BCAS logic modifications were effective in reducing the number and
duration of noneffective Vertical Speed Limit (VSL) alerts. The high noneffec-
tive VSL alert rate for overflight aircraft generated in the previous full

BCAS Knoxville simulation was substantially reduced,

4, The increase in positive command rate for active BCAS (compared to full
BCAS); is attributed to the lack of horizontal miss distance filtering. If
perfect horizontal miss distance information had been available, 53 percent
of the positive commands would have reverted to negative commands and 14 per-
cent would have been eliminated, The maximum benefit of horizontal miss dis-
tance filtering would be in the final approach area.

S. The increase in the negative command alert rate for active BCAS is duc

to the lack of horizontal miss distance filtering and the modification of

the BCAS logic following the ftull BCAS simulation. Horizontal miss distance
filtering would climinate some of the negative commands,  Due to BCAS logi.
modifications, many of the c¢ncounters that would have resulted in a noneffective
VSL now result in a noneffective negat ive command,

b. A higher BCAS alert rate exists for Visual Flight Rules (VFR) operatiouns
when compared to Instrument Flipght Rules (IFR) operations, The BCAS logie
parameters cevaluated were designed to detect penetrations of TFR sceparation
criteria, This results in threshold pavameters that gencrate BCAS alerts ton
VFR traffic even when VFR separation oriteria are maint -ined,

7. Use of altitude desensitization in the absence ot prange intormatiog
may be adequate, Use of altituce was an etffoctive determinant ot an afrcrate”
protection requirements. However, altitade-only desonsatization encoutages

high positive command rates amonyg airorats over=tiviag the terminal arca,

Rrpmtt > NRAIP™ (5




RECOMMENDATIONS

Based on the analysis of the data from Knoxville Air Traffic Control (ATC)/
active Beacon Collision Avoidance System (BCAS) dynamic simulation the
following recommendations are made:

1. The Vertical Speed Limit (VSL) logic modifications described in Appendix
F of this report should be made a permanent part of the BCAS algorithm. These
VSL logic modifications reduced the number and duration of undesirable VSL
alerts. The VSL logic could be further refined to include additional checks
for vertical closure prior to issuing an alert.

2, Since VSL's are no longer used as precursors to positive or negative
commands, an examination of the feasibility and benefit of Partial Proximity
Data (PPD's) for active BCAS should be made. Active BCAS PPD's give only
intruder range and altitude.

3. The BCAS logic should be modified to prevent or limit command oscillation.
Although a rare occurrence, the direction of a command generated by the reso-
lution logic can reverse in an encounter and confuse the pilot.

4, A BCAS measurement error model should be incorporated into future BCAS
performance analysis. Perfect position and velocity data were provided to the
BCAS tracker in the active BCAS simulation, and the results, therefore, repre-
sent the upper bound on expected BCAS performance,

5. An examination into the feasibility of making the BCAS logic and resolution

parameters sensitive to Visual Flight Rules (VFR) transponder codes should be
considered. A reduction of the undesirable alerts generated for VFR aircraft
could result.
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APPFNDIX A

KNOXVILLE (McGHEE TYSON) AlRPORT TRAFFIC FLOW PROCEDURES

EAST AND WEST CENTER.

Inbound traffic will be at or descending to: jet aircraft, 10,000 feet; props,
8,000 feet.

Traffic will be handed off to the appropriate approach controller prior to the
approach control area boundary.

EAST AND WEST ARRIVAlL. AND DEPARTURE.

Arrival--Provide standard separation and control of all aircraft in assigned
airspace.

Assign 2,500 feet or above to all aircraft, Sequence arriving aircraft in
trail and effect handoff to final controller prior to aircraft reaching a
point 3 miles from final sector.

Departure——Turn departing aircraft tfrom assigned runway heading as soon as
practicable. FEnsure standard separation between arriving and departing
aircraft. Handoff to appropriate center sector when clear of arrivals or
approaching terminal boundary.

LOCAL CONTROL,

Provide separation between departing and arriving aircraft,

Assign runway heading to departing aircraft., Handoff departing aircraft to
appropriate sector (east-west) depending on direction of flight,

The Knoxville terminal arca arrival traffic flow is depicted in figure A-1.
The Knoxville terminal area departure traffic flow is shown in figure A~Z,
Figure A-3 shows the Atlanta Center (Knoxville sector) traffic flow patterns.
Table A-1 identifies the Knoxville arcva navigation fix list.
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Identifier

BLA
CHA
HCH
HRS
HMV
Loz
RMG
SOT
SUG
BRG

2KC
2F0
2GB
2HS
IMF
2NR
20T
2PH
2PM
28w
20W
2WP
EW

FA

SZ

TO

TABLE A-1.

KNOXVILLE FIX LIST

Fix

Blackford
Chattanooga

Hinch Mountain

Harris

Holston Mountain

London
Rome
Snowbird

Sugarloaf Mountain

Whitesburg

Buck
Forms
Greenback
Howard

Maynardville

Norris
Ottway
Pittman
Piedmont
Sweetwater
Westbourne
White Pine
Etowah
Farley
Swanson
Tampico
Blain
Decat
Dubbs
Kiruh
Knits
Marbl
Miami
Peeks
Power
Spity
Winna
Dkt own
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APPENDIX B

ATRCRAFT PERFORMANCE CHARACTERISTICS
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BCAS QUESTIONNAIRE

SUBJECT DATE
SERIES CONTROL POSITION(S) RUN ¢
l. To what extent did the following aspects of the test create problems for

3.

you? Check the appropriaté columns,

NOT AT : A GREAT
ASPECT ALL A LITTLE A LOT DEAL

a. Traffic demsity

b. Mix of BCAS and
ATCRBS

¢. Reduced visual
separation
criteria

d, Clutter created
by the BCAS dis-
play features

e, BCAS concept

Do you feel that your performance would have improved if you had had more
experience with the BCAS concept?

NOT AT ALL SOMEWHAT GREATLY
Was the simulated environment realistic enough for you to properly evalu-
ate the BCAS concept?

YES NO

. :
If no, what features were unrcalistic?




How did BCAS affect the following aspccts of your control? Check the
appropriate columns.

GREATLY DID NOT GREATLY
ASPECT DECREASEp | DECREASED {0 incE | INCREASED | prerEASED
a. Orderliness
b. Traffic Hand-

ling Capacity

Ce.

Safety

Workload

e,

Stressfulness

Applied
Separation

1f all aircraft had been BCAS equipped, would your rating have changed?

YES

If yes, in what way?

NO

Did you agree with the BCAS commands:

I1f not, please cite example(s).

'NEVER

OCCASIONALLY

USUALLY

_ ALWAYS

Was the presentation of the following command in the data block casily
interpreted?

Posifive conmmands

YES

NO

Cc-2




10,

11,

1f no, what was confusing?

Do you consider the blinking command an acceptable attention device for
controller alert?

YES NO

If no, please suggest alternative —_

Did you ever have difficulty reading a command because of clutter?

YES NO

Please claborate

If clutter presented any difficulty, in which areas was it detrimental?
FINAL APPROACH VECTOR AREAS

HANDOFF POINTS OTHER (SPECIFY)

In light of your experience to this point, with BCAS, please circle the
statement that most closely matches your opinion on whether BCAS should

be put into operational use,

a. I strongly oppose its use

b. I oppose its use.

c. I am indifferent to its use.
d. 1 favor its use.

strongly'favor its use,

[
.
-




12,

13,

Please explain

Has your answer to the above question changed as you gain more experience
with BCAS?

YES NO

Please explain

Would you prefer to see negative commands displayed in the data block?

YES NO

C-4




APPENDIX D
DEFINITIONS OF ATC PERFORMANCE MEASURES

1, AVERAGE TOTAL TIME-IN-SYSTEM FOR ARRIVAL AIRCRAFT (MINS). ;

Time-in-system, for this measure, is defined as the elapsed time between a
flight's actual start time and its termination time. Termination time, in
this case, would be either the ‘touchdown time of an aircraft, or the end of R
the data period. This measure was an accumulation of time-in-system for all s
arrival aircraft which were active in the system during the l-hour data period,
and stated as an average.

2, AVERAGE INSTANTANEOUS AIRCRAFT COUNT PER CONTROL POSITION,

A computer program counted the number of aircraft under each controller's ’
Jurisdiction each second during the data period and retained the minimum and
maximum count for each l-minute period. The minimum and maximum counts were il ]
accumulated for each 60-second period and averaged for the data hour.

3. AVERAGE NUMBER OF CONTROL EFFORTS PER AIRCRAFT PER HOUR,

A control effort is defined as a radar vector, altitude change, or a speed
change issued by a controller. This measure is an accumulation of the number
of control efforts issued in the east approach, west approach, and final
approach sectors throughout the l-hour data period, divided by the number of
aircraft controlled during the l-hour data period.

4, AVERAGE TALK TIME PER ATIRCRAFT (SECONDS).

This measure is an accumulation of the message durations for all sectors
divided by the total number of aircraft active in the system,

D=1




APPENDIX E

KNOXVILLE HOURLY ALERTS——AIR CARRIERS

The average alert rate and duration of alerts issued to air carriers is pre-
sented in table E~1l., Air carrier aircraft comprised 30 percent of all the air
traffic in the simulation. The number in parenthesis represents 30 percent of
the average alert rate generatéed for all aircraft during the simulation. No
alr carriers were overflights.

Due to the high performance of air carrier aircraft, their average time in the
system per aircraft was 13.1 minutes compared to 21.1 minutes for all other
aircraft. On a per-aircraft basis, 1 in 20 air carriers received an advisory,
and 1 in 40 received a command, On a per-aircraft flight hour basis, one

noneffective alert was issued every 4.3 aircraft flight hours, and one effective

alert was issued every 9,1 flight hours. Air carrier aircraft did not receive
more than their expected share of total alerts.




LT

TABLE E-1. KNOXVILLE HOURLY ALERTS (AIR CARRIER AIRCRAFT ONLY*)
Altitude Desensitization Altitude/Range Desensitization
IFR IFR/VFR IFR IFR/VFR
Number Avg Number Avg Number Avg Number Avp
(alerts/ Dur |(alerts/ | Dur (alerts/ Dur (alerts/ | Dur
Alerts hr) (sec) hr) (sec) hr) (sec) hr) (sec)
Advisories
VSL 0.0 -—- 0.0 - 0.0 -—- 0.0 -—-
Negative 0.5 11.8 0.0 -——- 1.0 14.0 1.8 20.0
Command
TOTAL 0.5(1.0)**% } 11.8 0(0.5) | --- 1.0(0.8){ 14.0 1.8(1.8){ 20.0
Commands
VSL 0.0 -— 0.5 6.5 0.0 -—- 0.0 -
Negative 0.0 -—- 0.0 -—- 0.0 -—- 0.0 -—-
Command
Poslitive 0.0 -—— 0.8 9.3 0.5 14.0 0.5 12.5
Command '
] mﬂ_-,wl"¥ — _
TOTAL 0.0(0.5) -—- 1.3(1:1) | 8.2 0.5(0.4) 14.0 0.5(1.2)} 12.5

* Air carrier aircraft comprised 30 percent of all the traffic.

Average time in system for air carrier aircraft was 13.] minutes versus
21.1 minutes for all other aircraft.

**Represents expected number of total alerts based on proportion of air

carriers in sample.




APPENDIX F

BCAS LOGIC MODIFICATIONS
A
BCAS algorithm modifications were made prior to the Knoxville active BCAS
simulation. The modifications included the restructuring of VSL logic, alert
initialization changes, and a revised threat volume parameter list. The "
principal differences between the logic used in the Knoxville full BCAS 'f
simulation and the logic used in the Knoxville active BCAS simulation are
summarized below: ,
-  Two-out-of-three logic is used for all commards, including VSL's.
- Two consecutive misses are required to turn off commands, including VsL'..
- In order to receive a VSL alert, own aircraft must have vertical rate ,
towards the intruder. (.
- Parameter values were changed. !
- TRTHR. TRTHR is the threshold value against which the modificd-
tau (TAUR) is compared. This parameter was changed from
40 seconds to 25 seconds, reducing the threat volume to
coincide with positive and negative command threat volumes.
1 - DMOD. DMOD is the tau distance modifying parameter. It is
applied to the tracked range (R) to prevent late warnings
in turning situations. DMOD was reduced from 1.8 nmi to
1.0 omi for desensitization level 5, 1.0 nmi to 0.5 nmi
? for desensitization level 4, and from 0.75 nmi to 0.3 nmi
‘ for desensitization level 3,
é - LALT, LALT was the altitude separation threshold outside which
| VSL commands were not given. This threshold was c¢liminated
as the initial check in the determination of the requirement
for VSL commands; substituted was a projected miss distance
check of WD<900 feet.
- TVTHR, TVIHR is the threshold value against which the vertical tau
(TAUV) is compared. This paramcter was changed from 40
seconds to 25 seconds for VSL's, therebv reducing the
threat volume to coincide with positive and negative com=—
mand threat volumes
The revised threat paramceter definition and values used in this simalation t
are shown in table F-1, |

The integrated VSL and positive and negative command iopic is shown in
figure F-1.
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HORIZONTAL MISS DISTANCE FILTER LOGIC.

If bearing information had been available, the positive and negative alert

rates could have been reduced. The projected horizontal miss distance (MD)

for each data cycle was calculated as shown in figure F-2, When MD exceeded
the alert thresholds MDPOS or MDCMD, the alert was filtered for that data cycle.
If the alert was filtered each second, the overall positive or negative alert
count was reduced by one. The filter thresholds are shown in figure F-2,
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% 0.5 nmi $
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4 2.0 nmi
4 0o
NSNS V)

FIGURE F=2, HORIZONTAL MISS DISTANCI FILTER LOGIC
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PPD LOGIC.

The PPD analysis was conducted using a modified version of a previous full
BCAS IPD logic. The modifications eliminated alert filtering based on
projected horizontal miss distance information. The logic is shown in
figure F-3, The values of the threshold parameters were identified in
table F-1,
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APPENDIX G

ATRCRAFT DENSITY ANALYSIS

An analysis of the simultaneous aircraft density in the Knoxville air traffic
model was made., A grid of 1 mmi2 cells was developed., Aircraft position was
recovered for each second, and the appropriate cell count was increased by
starting from a count of zero at the beginning of the minute. All aircraft
positions for each second were tallied in this manner for the entire experi-
mental run (75 minutes). The number of aircraft within 10 nmi of a fixed
point (the center of each cell) was computed for each cell in the grid.
Initial analysis did not consider altitude.

The average aircraft density within 10 nmi of each cell was developed for
every minute., The BCAS specification density is 0.02 aircraft per nmi-. 17¥
the sum of counts in all cells within 10 nmi of the point under consideration
exceeded 377 (60 sec/min x (10 nmi)2 x mx 0.02 aircraft/nmil=376.99 aireraft),
the average density for the cell in question exceeded 0.02 aircraft per nmi -
for that particular minute. Repeating this process for the 75 minutes of
experimental data, the percentage of times the limit was exceceded was obtained
for each cell, Figure G-1 presents the results for 10-nmi range and no
consideration of altitude. The density legend is in the upper right portion ot
the figure. Shading identifies the percentage of time the density within

10 nmi exceeded 0,02 aircraft. The pattern depicted indicates the increascd
density within 15 nmi of Knoxville and the heavier traffic on the routes which
converge at Tyson VORTAC.

The above analysis was based on aircraft count within 10 nmi of a ccll,
Analysis was repeated to identify where the density within 5 mmi of cell
exceeded the BCAS specification limit. The regions vhere this limit was
exceeded were considerably reduced. The results of this analvsis is shown

in figure G-2., The reduction indicates the potential benefits of interrogation
power reduction techniques such as whisper-shout,

Figure G-3 represents areas where the BCAS specification limit was exceeded

if altitude stratification is considered. The Knoxville traffic model was
designed to model the Knoxville terminal arca traffic., As a result, overtlight
traffic above 10,000 feet mes.l. was not modeled.  The regions in figure ¢=3
represent the plane arecas where the density limit was exceeded after altitude
filtering had been applied. The results indicate additional! reductions in the
sizes of the regions where the density limit is exceeded when compared to
figure G-1.
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APPENDIX H
DESCRIPTION OF ENCOUNTER PLOTS
A legend for the horizontal view of BCAS encounters is presented in figure H-1

and table H-1, Similarly, a legend for the vertical view is presented in
figure H~2 and table H-2.
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10,

11.

12,

13,
14,
15,
16,
7.

i8.

TABLE H-1. INTERPRETATION OF HORIZONTAL VIEW DATA (FIGURE H-1)

START TIME = The time in hours, minutes, and seconds when BCAS
tracking began for the pair,

END TIME = The time in hours, minutes, and seconds when BCAS rrack-
ing terminated for the pair.

ENCOUNTER NUMBER = Number assigned to the BCAS encounter pair.
SENSITIVITY = BCAS performance level at start of encounter.

CPAH = The closest horizontal approach in feet for the pair during
the encounter period,

CPAV = The closest vertical approach in feet for the pair during the
encounter period.

MD = 1st BCAS alert for this pair:

C = Climb 45 = Limit climb to 500 ft/min
D = Descend 410 = Limit climb to 1000 ft/min
NC = No climb 1420 = Limit climb to 2000 ft/min
ND = No descent - = Are the complewcentary limit descent
alerts
AT TIME = Time in minutes and seconds for the initial alert in this

encounter period,

MD = Calculated horizontal miss distance at CPA assuming no hori-
zontal maneuver for cither aircraft in the pair.

ALT = Relative altitude at time of 1st alert,
XANG = Projected crossing angle at time ot Ist alert,

CPA AT TIME = Time in minutes and seconds of three=dimensional
closest point of approach for this pair.

SCPA = Slant range in feet at A,

SCPAH

it

Horizontal component of SPCA in teot.
SCPAV = Vertical component of SCPA in jeet,

ACl ID = Identity and BCAS cquipnent  tatus of arrervabt Neo 1,

AC2 ID = Identitly and BCAL cquijna EE R
The following clemente conat itatod 50 heris ntal ol Lt Lt i
data:
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de

b.

TIME

ACl =

AC2

ALT =

POS =

RANGE

TAUR

TAUV

MD:

RZ:

= Time in minutes and seconds of the sequential data.

The alert/advisory being generated for aircraft No. 1.
The legend for this entry is

S = Steady PPD LV+5 = Limit climb to 500 ft/min

F = Flashing PPD LV+10 = Limit climb to 1000 ft/min
NC = No climb LV+20 = Limit climb to 2000 ft/min
ND = No descent LV-5 = Limit descent to 500 ft/min

C = Climb LV-10 = Limit descent to 1000 ft/min

D = Descent 1LV-20 = Limit descent to 2000 ft/min

The advisory/alert being generated for aircraft No. 2.
Relative vertical position for the generated PPD (Hl =
intruder above, CO = intruder within 500 feet vertical,
LO = intruder below.)

PPD clock position of intruder.

= Range between aircraft.

Range Tau.
= Vertical Tau (* = not calculated on this cycle).
Projected miss distance,

BCAS calculated relative altitude.

H=
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TABLE H-2. INTERPRETATION OF VERTICAL VIEW DATA (FIGURE H-2)

AC1 ID

Identity and BCAS equipment status of aircraft No. 1,

AC2 ID = Identity and BCAS equipment status of aircraft No. 2.
TIME = Time in minutes and seconds of sequential data.

AC1

Alerts/advisories being generated for aircraft No. 1.

AC2

Alerts/advisories being generated for aircraft No. 2,
RZ = BCAS tracked relative altitude.

ADOT = BCAS tracked vertical closure rate in feet per minute.

V™MD BCAS calculated projected vertical miss distance in feet,

DOT

]

Variable not used by active BCAS.

H-6







